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ABSTRACT

The form of the friction terms for a shallow layer of fluid on a sphere is discussed for isotropic and trans-
versely-isotropic fluids. We then examine the nature of convection in a transversely-isotropic fluid and
find that long flat convection cells with a width to height ratio of 2 (v /vv)* are produced, where vy, vy are
the horizontal and vertical diffusion coefficients. The critical Rayleigh number is given by Re=4x%vy /vy,
but another Rayleigh number P=8gATd5/(vyxyL?), with a constant critical value Pe=4#* is shown to
be a more relevant parameter. Results for convection in a rotating system are also given.

1. Introduction

The consistency of the so-called traditional approxi-
mation to the dynamical equations describing motion in
a shallow atmosphere has been discussed by Phillips
(1966) and Veronis (1968). Their discussion concerned
the form of the rotation and inertia terms when the
approximation 7 — @ is to be made. Phillips showed that
advantages can be realized by introducing the shallow
approximation as a geometric approximation via the
curvilinear scale parameters. The limitations of this
approach and the non-generality of the resulting equa-
tions, however, were pointed out by Veronis.

In this paper we would like to discuss a related
problem, namely that of choosing the most appropriate
form of the friction terms for a shallow atmosphere. Such
a formulation is needed for use in the numerical inte-
gration of equations describing laboratory and geo-
physical flows. In the derivation we will apply Phillips’
geometric approximation to the fensor (2nd and 4th
order) form of the stress and rate of strain relationships.
(For the rotation and inertia terms Phillips introduces
the approximation into the veclor, i.e., the 1st order
tensor forms). This approximation is chosen on the basis
that it leads to the most consistent set of simplified
equations without excluding any terms which maintain
known physical processes (unlike the case with the
rotation and inertia terms). However, the possibility of
there being phenomena needing other approximate
forms or the exact form should be remembered.

To establish the approximation procedure most
simply we first derive the approximate form to the
(isotropic) Navier-Stokes friction terms for a shallow
shell. The resulting expressions are relevant to labora-
tory-scale flows of the type discussed, for example, by
Greenspan (1968) or Baker and Robinson (1970).

For planetary-scale flow the form of the friction terms
is less well defined, being dependent upon assumptions

about the turbulence, and there is no unique exact form
to which the geometric approximation can be applied.
As a first approximation to this problem we derive the
friction terms for a transversely-isotropic fluid and
apply the geometric approximation. However, the as-
sumption of transverse-isotropy itself implies a priori
the shallowness of the system and it is thus an intrinsic
element in a shallow atmosphere approximation.

To examine some of the properties of a transversely-
isotropic fluid, an analytical solution describing the
convective instability of such a fluid is obtained. The
convection problem is a suitable one for analysis as the
complex transversely-isotropic equations can be solved
for this problem. Physically the solutions may give an
idea of how large-scale convection can organize itself
out of smaller scale mixing.

In summary, we consider three different but related
problems concerning friction term behavior in a shallow
atmosphere: 1) in Section 2 the geometric approxima-
tion is applied to the Navier-Stokes friction terms,
2) in Section 3 we consider the form of friction termsin a
transversely-isotropic (and therefore shallow) fluid and
the form when the geometric approximation is made,
and 3) in Section 4 convective instability in a trans-
versely-isotropic fluid is analyzed.

2. Geometric approximation of Navier-Stokes
friction

The exact Navier-Stokes friction terms in spherical
coordinates are

2w 2(vsinf)y 2u,
F,= v[V% ], (1a)
72 r?sind 72 sind
v 2wg 2 cosh
Fo=y| V¥ } o |, (1b)
r2sin%0 7?2 #%sin?0
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F,= VI:V% 8 1 "‘P:I’ (1c)
72sin%@ 72sinf 7% sin26
where
1 1 , 1
V2q___(,r2qr)r ! - (qa sinf)- Qoo (2)
72 sinf 7* sin®0
and
1
~(r2'w)r+ (v sinf)s+ 1y =0 3)
7 sinf r sm@

is the equation of mass conservation. An incompressible
fluid and constant coefficient of viscosity » are assumed
for convenience. The expressions are given by Batchelor
(1967) and we will use the classical physical coordinate
system rather than the meteorological one. Thus, we
take coordinates (r,8,¢) to denote radius, co-latitude
and longitude, respectively, and (w,s,u4) to be the related
velocities. Egs. (1) are derived from stresses r,; and rate
of strain functions e;; which are taken to be related by
the expression 7;;=2ve;;. In spherical coordinates the
exact rate of strain expressions are
sinf/ u Uy 3
€rr =Wr, 69¢,=——<——> +
2r \sinf/ ¢

27 sind

v w W, r/u
600=_+_, €Cor= . <+_ _> g (4)
r r 2rsinf  2\r
%, W vcoth r(v W
Coo=——F—F——, eu=- —) +-
rsinf r r v/, 27
and the friction-to-stress relationships are
d 19 1 9 A
FT=__TTT+— ’_Trﬁ_!_ T Tre
dar r a6 rsinf do
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+-Q27,,~T06— Tppt 7.0 COtH)
7
d 19 1 9
Fo=—r0+— —r1po+ —Top
or r 36 rsinf do
Lo (5)
1
+—[(799—-TW) cotf+37,0 |
7
9 19 1 9
qu:_'rw""_ —Toe T Tee
or r 08 7 sinf do
1
+-(37,o+ 274, coth)
¥

J

Egs. (4) and (3) yield those given in (1).
The question arises as to the form of (1)-(5) when the

shallow layer approximation of r=a-3, where 2<a, is
to be made. We will follow Phillips suggestion of ap-
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proximating the scale factors 4; from
h,=1; he=r; h,=r sinf
to . (6)

h,=1; h¢=a; h,=asind

For the friction terms to have a consistent stress-strain
behavior the approximations are introduced first into
the stress and rate-of-strain relationships and then the
friction terms are derived from them. To do this we need
the curvilinear form of the equations (e.g., Batchelor,
1968, p. 600; Love, 1944, p. 90) :

1 duy Us 6h1 Us akl
1= f + —
hi 3¢ hihe 08y hshy 0&s ™
By & fus\ hy 9 fus\ |
)
2ho O\ I3 2h3 0E3\h2
1 d
Fy= l:—(hzhsrn) +—(/¢1hs7'12)+—(/11h27' 13)
h1h2}l3 651 65 653
T12 ahl Ti3 E)hl T22 61’12 T33 ahs
prelhy et m B e
hiha 0fy  hihs ks hahe 31 ks 061

Introducing the scale factor approximation into (7) and
(8) leads to the following approximate rate of strain and
friction-stress expressions:

uy u cotf Vo )
€ =Wz Cop—=—— -
2a 2a 2a sinf
Vo w Uz
Cep =", €= ? +— s (9)
a 2asinf 2
%, vcoth v, W
Cpo = R % y €z26= +
a sind a 2 2a )
i) 0 1 9 T20 COLO 1
Fz =—7'2le 7 zUJF —Tz¢"r‘
0z adb asinf do a
a d 1 9
Fo=—r0+—790+——— —10,
03 adl asind d¢
. r, (10)
+~(Tao—‘r¢¢) cotd
a
i) i) 1 d 2
Fo=—1,pF—79p+—— —7,,+—76, coOtf
0z adf asinf d¢ a J

with the equation of mass conservation becoming

) Vg v
w,+ +—4—cotd=0.
asinf a a

(11
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Substitution of (9) into (10) using .;=2ve,; gives the
following friction terms for a shallow layer:

F,=vV, 20, (12a)
v cos20  u, cotd
F0=V[Va2‘l)— - ], (12b)
a’sin?@  a?sind
u cos28 v, cotd
F¢=V[Va2u +2 :I, (12¢)
a®sin?  a?sind
where
ir1
V.= gt — ['——(90 sk ] (19
a’Lsinf sin?6.
Egs. (12b,c) can also be written
1 ]
Fo =V{'Uzz+ I:sin30<——> :|
a? sin?0 sind/ g1y
(90— 21, cosb) } , (14a)
a? sin%@
1 %
F, =v{ Ut [sin30<——> ]
a? sin?0 sinf/ ¢-lg
(#pp+20, cosb) } , (14b)
a? sin%f

and the latter shows that for solid rotation, #=a sinf,
the fluid is stress free. This corresponds to the case of
u=r sinf in the exact equations, set (1). Furthermore,
the form of the second term of (14b) indicates that
relative angular momentum can only be changed by
torques exerted on the boundaries. We will show at the
end of Section 3, for a general case that includes Egs.
(12), that the dissipation of kinetic energy associated
with (12) is positive definite and give by ® = 2veje;;.

The equation set (12) is similar to that for a cylin-
drical system of equations as might be expected. The
unusual term involving cos26 makes possible the
transformation to the form (14) and thence the angular
momentum properties. The system of equations (9),
(10) and (12) derived by approximating (7) and (8) is
not the same as that which would be produced by letting
r—ain (1), (4) and (5). Neither would this system be
obtained from the vector invariant form

F=—uv, A (V.AV).

For these latter approximations the solid rotation must
be defined as #=rsind or (+2/a) sinf to give approxi-
mate zero dissipation to within (r—a)/e¢ order. The
stress-strain relationship of those systems would also
only be consistent to within this order.

Thus, the system of equations (9)-(12) appears to be
the most consistent set of approximated equations.
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Although there are limitations to this formalistic ap-
proach it is believed that this equation system does not
exclude any physical process. Also it is to be noted that
the hydrostatic assumption has not been made and that
w-related contributions to friction have been retained.

3. Geometric approximation of transversely~iso-
tropic friction

The set of approximated Navier-Stokes equations,
(12), is appropriate to laminar flows on a laboratory
scale. When turbulent flows are to be discussed it is
customary to use similar equations, replacing the mo-
lecular viscosity by an eddy coefficient K. This coeffi-
cient represents a parameterization of the turbulence
stresses which are assumed to behave in an analogous
way to the molecular stresses and in the simplest closing
procedure are taken to be proportional to the deforma-

tion, i.e.,
N K/ou; 0u;
Tij = —ui'u]-’—l-%&g,uk’uk' =;< +——>, (15)

x; 0%

where 7;; represents the deviatoric turbulence stress

tensor. The term 3$;;4:'%:’ is included in the stress
tensor and turbulent pressure term to ensure a correct
relation (15) when the stress tensor is contracted. Hinze
(1959, p. 21) and Monin and Yaglom (1971, Section 6.3)
provide a complete discussion of the formulation.

On a planetary scale the large difference between the
horizontal and vertical length scales means that the
large-scale turbulence is non-isotropic and that the eddy
coefficient K becomes a fourth-order tensor. The non-
isotropic stress formulation is similar to that adopted in
studies of the elastic properties of crystals or materials
such as wood which have preferred directions or
“grains,” as was noted by Richardson (1922, p. 222).
Complete non-isotropy has a complex stress-strain be-
havior involving 21 viscosity coefficients (see, e.g., Love,
1944, p. 159). For planetary-scale flows it can, however,
be assumed that the fluid is isotropic in the horizontal
plane.! This provides a substantial reduction in com-
plexity and forms so called ““transverse-isotropy” (Love,
p. 161). ‘

The formulation of transversely-isotropic stress for
planetary-scale flow has been discussed by Saint-Guily
(1956), Smagorinsky (1963), Kamenkovich (1967) and
Kirwan (1969). Although these derivations are con-
sistent the authors ignore the form of the w-stress term
which we require for completeness and application to
the convection problem in Section 4. Thus, we will
provide an alternative derivation of the transversely-
isotropic stresses, initially in a Cartesian framework for
simplicity, and then discuss the form in spherical co-
ordinates under the geometric approximation.

1 Except close to any lateral boundary where the problem is
more complex.



Jury 1972 GARETH P.

a. The Cartesian transverse-isotropy relations

In this section we use the Cartesian coordinates
x1, X2, X3 with velocities %1, s, #3. These are interchanged
with x, y, 2 and #, v, w, respectively, when simplification

T11 et co' c3s 0
T22 coo' e st 0
T33| = 633" Cssn 63333 0
T23 0 0 0 C13
T13 0 0 0 0
T12 0 0 0 0
where
1/6u, OJus
ers=_< + >-
2\0x, 0%,

From the stress-strain matrix (16), we obtain the
simplified stress forms:

Trz= A 114,+A Zvy+A 3Wa,
Tyy= A 2Mz+A 1’0y+A W2,
Tze= A S(uz‘i'vy) +A Wy,

Tyz= 4 5 (7)2+wy)

Tzz=— A 5 (wz+u2)

Tay =% (41— A2) (4, +72)

As the friction equations deal with deviatoric stress the
constraint 7114729+ 733=0 must also be added. [ Note
that this constraint also holds for the turbulence
stresses in Eq. (15).] This constraint gives As-+A4.4
=A;+ A, for an incompressible fluid. Anticipating the
final form of the equations, we define vg=3%(4:—4,),
vy=A;and e=A;—A.. Then Eqs.(17)may be rewritten

}, (18)

which upon substitution into F;=4dr,;/dx; give the
friction terms:

(17)

Ty =vv (v +w,)
Tezz=VV (wz+uz)
Tay=VH (uy+vz)

Tez= 27’1qu+ €Wy,
Tyy=2vpv,+ew,,
Tz 2(1/11— e)wz,

Fy=v5vzet0y) + vV — (v —vv — Wy
F.=vy(wertwy,)+ Cvy—vy—2¢)w.,

Alternatively we could define vo=4,4+4,—A5—24;
and derive the friction equations in the form

F,=vy (’uzz+uuu) + vyt — (VH —Vvy— é)wzz
} (19

Fy=vy (vzx+vyy) Fryv.—3 (V* - VV)wzu

F,=vy (uz:c+um/) +vyte, ‘_% (V*_ VV)'wzz
(20)
Fz =vy (wzz+wyy) +V*wzz

The equation set (20) reduces to the isotropic Navier-
Stokes equations if vy =vyr=v,=» and must therefore
be a form appropriate to a limiting case of transverse
isotropy in which the ratio of the vertical length scale d
to the horizontal L approaches unity. However, the
form (19) is more appropriate for a shallow atmosphere
and our discussion will concentrate on it. The set (19)
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is possible. The stress-strain relationship for an elastic
body that is transversely-isotropic with respect to the
x3 direction can be written upon obtaining the symmetry
properties as (after Green and Zerna, 1954)

€11
€o2
€33, (16)
2623

2e13

2612

SO OO
SO OoOOoOCoO

o8

% (011“*62211)

reduces to the Navier-Stokes form if »g=w»y=» and
e=0.

An interesting result in (19) is that the horizontal
coefficient of the F, component is »y not »g as might be
assumed in a simple splitting procedure. The inter-
dependence among the coefficients of the three equa-
tions (19) makes it impossible to make separate as-
sumptions in approximating this system.

The unknown quantity in (19) is the coefficient e. The
magnitude of this coefficient probably lies between the
two limiting values of e=~0 and e~ vy, depending on the
type of atmospheric motion under consideration. Com-
paring the stress formulation (18) with the turbulence
stresses (15) we see that e is related to w’2, and thus its
magnitude is determined by the degree of vertical
turbulence. For an atmosphere such as Jupiter’s that is
highly convective in the vertical, it will probably be
large so that e=~vy can be expected. For a less convec-
tive or stable atmosphere where w222, such as the
earth’s atmosphere or ocean, then e~0 can be expected.

The energy dissipation ® produced by the stress
forms (18) can be obtained from ®=re,; as

S =vul (ezz—eyy)*+4ez,]
+3(ra—ee.rt4vy (3222+3U22) , (21

which is positive definite if v5>0, vy >0, vy>e. This
expression also reduces to the Navier-Stokes equivalent.

b. The spherical transverse-isolropy relations

We can obtain the geometric approximated stresses in
a transversely-isotropic shallow atmosphere by substi-
tuting the rate of strain relations (9) into the stress-
strain matrix (16) to give
7,Uo>\
e

'rw=m< - 0>+€wz, Tﬂz=VV<7)z+
@ sinf
Vg We
Tee=VvH\ — +€wz, Tz = VY U+ R
a sinf
Vo

>
a Sln0 J

Uy v cot

a

. (22)

ug % cotd
T2 =200n—€w,, Tgp=vp| ————
a a
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Applying (22) to (10) gives the required [riction terms

~

14

v

F,= ;V;ﬁw-{— v —vy~—2€)w,.,
a
vy cos20 cotf

F0=——|:VH21)—1) —2u, :|
a? sin?f siné

W2e L

+VV7)zz—(VH'—VV—'6) 5

a

v cos28 cotf

F¢=—[Vg2u—u - +2v¢—]
a? sin%f siné

(23)

Wz

—I"VVuzz - (VH —vy— E)

a sinf
where

q
Vu’q=qes+qs C0t9+_‘ﬁ-
sin?f
To obtain the kinetic energy dissipation associated

with (23), Egs. (10) are multiplied by the velocity
components. This leads upon regrouping to

wF,+vFotulF,=A—, (24)
where
A= (0Tt o710+ 4Ts0):
+——"[sinb(wr.o+vreeture,) o
a sinf
F——Awr ot vTo, T UT o) 6 (25)
a sind
Vg Uy OV W
cI)ETzzwz‘{'Tﬁu =T¢4; ; + C0t9>+7'z0<_'+7)z)
a asinf a a

Weo Uy ug U
F 7l — +uz>+n‘, —t——= cot0>. (26)
a siné asinf a a

The quantity A represents the energy diffusion (zero
volume integral) and ¢ is the dissipation. Upon rewrit-
ing the various terms in (26) in terms of the rate of
strain functions using definitions in (9) and (22) and
rearranging, we obtain

= VH[ (eog —e¢¢)2+460¢2:]
+3(va—e) et vy (e ez, (27)

Thus, the dissipation is positive definite and given by
®=17,¢,;; as comparison with (21) shows.
4. Convection in a transversely-isotropic fluid

It is possible to obtain analytical solutions to the
equation set (19) for the convective instability problem.
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This provides a comparison of the alternative stress
formulations for this particular problem. The nature of
convection in a turbulent flow is not well understood so
although our solutions for convection in a transverse-
isotropic fluid may give some idea of how large-scale
convection can organize itself out of small scale mixing,
we cannot as yet establish the physical reality of such
convection. However, experiments on turbulent con-
vection between two large horizontal plates with a
narrow gap, a system resembling a shallow atmosphere,
indicate that elongated convection cells of the type to be
discussed do exist (Deardorff and Willis, 1968). This
lends some credence to the eddy viscosities. The analysis
may be more relevant to the problem of understanding
the type of convection that could occur in a mathe-
matical system designed for studies of planetary-scale
flow. For simplicity the convection is examined in a
Cartesian framework. Convection on a sphere has been
examined by numerical integration and will be discussed
in a separate paper.

The standard Bénard cells of classical convection
theory have a fixed cell-width-to-depth ratio of about 3,
whereas for some observed geophysical and astrophysical
cells this ratio is much larger. Ray (1965) has shown
that the non-isotropy of eddy mixing can alter the shape
of the convection cells and perhaps explain the obser-
vations. Ray’s analysis was for friction terms which
were of the form

F=vpV V40V, (28)
in all three velocity components. This so-called spli
form of the friction terms is clearly different to that for a
transversely-isotropic fluid [ (19) ]. We will compare the
solutions obtained for the two sets, (19) and (28). The
complex form of Ray’s numerical solutions obscures the
physical results so we will also derive simplified expres-
sions for the cell properties.

a. Solutions of the perturbation equations

The equations of motion for a Boussinesq fluid are

Du
—_—= —-7rg;+V11V12%+VV%zz"‘V1wa:z1
Dt
Dy
—=—m,traVitrtrvv.. —viwy.
Dt
Dw
— = —m,ABgT vy Vi trow., ¢, (29)
Dt
DT
—“‘—‘KHVIZT"_KVTzz
Dt
e e e

V2= 9%/ 9x%+ 02/ dy? J
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where 7= p/po is the hydrostatic pressure deviation, T
the temperature difference from the value T of the
lower boundary, «, kv are thermal conductivities, B
the expansion coefficient, and vi=vg—vy—e¢, va=2vg
—yv—2e. For an unbounded horizontal layer of fluid of
depth d heated from below by a temperature differential
AT, the perturbation equations are

] 92 AT
D,T= <—-—K11V12—KV—">T=W‘—, (30a)
at 9z* d
g a?
Dlu—::— (——*anlz—llv—“)u: =Ty —V1Wzz (30b)
at 0z2*
Dyv=—my—v1Wy, (30c)
a a?
D2'wE <-— —VVv 1Z “V2*>w = —7rz+ﬁg T7 (30d>
ot 07*
where the static equilibrium state is given by
z
T*=Ty—AT-, =, *=pBgT%, (31)
d

and D), Ds, D; are differential operators.
Eliminating pressure and temperature in (30) gives an
equation for w:

AT
Ds[(Dl—vlvl‘l)wzerDleZw]=ﬁg—(gvlzw. (32)

Following Chandrasekhar (1961) we substitute
w=W (3) exp[i(kx+k,y)+wt]

and then set w=0 to obtain the equation for the
marginal state. Following Chandrasekhar it can be
shown that w is real. This gives

[(D*—ma?) (D*+at—n*a?D?)+Ra*JW =0, (33)
where we have made the definitions
BgATd? z d
R= a? =d2(k932+k1/2)) g‘ = D =
Kyvy a at
Kgp=mKy, vg=hvy, €=y

so that n*=4n—2—3l.

For simplicity, the case of two free boundaries is
taken and as in Chandrasekhar it can be shown that the
boundary conditions are W=D*W=0 so that
W =W, sinrn{ is the form of the solution. This gives for
r=1 the critical Rayleigh number as

w2 't
Re= (ma+—><a3+——+a1r2n*>, (34)
a a
where a is given by dR/3e=0, i.e.,
Ambs+ 27 (mn* 1) b2 —2m5 =0, (35)
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where
b=al

If the above analysis is repeated with the “split”
friction form (28), we have (Ray, 1965).

,".2 7|'2
Re= <ma+—><na+——> (r*+a?),
a a

Amb3+ 2w (m+n+mn)b?—2x8=0. 37)

Although the cubic equations (35) and (37) can be
solved numerically it is more informative to derive their
simple asymptotic solutions for large m. The two ex-

treme values of € give the range of values for @ and R®
in (34) and (35) as

@

(36)

=ygy and Il=n=m,

, I o
a=n/(m)t, v=2(m)}, Re=dmn!
1=0,

a=m/(2m)}, v=(8m),

(i)

e=0 and m=n,

39
Re= 9m7r4} (39)

where y=2n/a is the cell wavelength width-to-depth
ratio. The cubic (37) has the same asymptotic solution
as (38). Clearly there is significant qualitative difference
between the two solutions (38) and (39). The lower
Re in (38) is consistent with the earlier argument that
e~yp is likely in a convective atmosphere and that
e~0 represents a more stable atmosphere. The asym-
ptotic solutions correspond to solving equations (30)
with D=0, i.e., quasi-hydrostatic.

b. Dimensional analysis

To interpret the analytical results further it is useful
to make a dimensional analysis of the governing equa-
tions to extract the basic parameters. Consider for
convenience the case of two-dimensional motion and
introduce a streamfunction ¢ and vorticity 7 as

v=y,, wW=—Yy, 1=Vt (40)
The governing equations may then be written
an oG, BeT, - + i
- = 14 22y
o 9Gy) 8L yTVHNyy TVVY (41)
aT W, T)
— =K11Tyy+KVTzz- (42)
ot a(zy)

Taking L and d as horizontal and vertical length scales
where L>>d, ¥* as the scale of the streamfunction,
Y*d2 for the vorticity and 7 for time, we can non-
dimensionalize (41) and (42) as

v am ¢ oWm)  BgAT

dral Ldo(sy) L
VVIl/* VHd2

+ (lez‘*“_L'Z"lyu), (43)

d* vy

v
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K11d2

AT 3T ATY* o, T) «xvAT
- . = ! /Tzz } Tyy); (44)
Ld 3(z,y) d? \ kyL?

I
T 0

where the variables now represent dimensionless forms.

Comparing the second and third terms of (44) gives

Y*=ky(L/d). And then comparing the two right-hand
terms of (43) gives a parameter
BgATds

P=——— (45)

VvaL2 ’
the Rayleigh number for this problem of elongated
cells. The nonlinear vorticity term is of the order of
kv/vy in relation to the other terms. We have assumed
that the viscosity parameter vgd?/vvL? is of the order of
unity.

5. Conclusions

The isotropic and transverse isotropic friction equa-
tions have been derived for a shallow layer of fluid on a
sphere [(12) and (23)7]. The non-isotropy introduces
additional terms with interdependent viscosity coeffi-
cients whose values depend on the nature of the
atmosphere under examination.

The analysis of Section 4 has shown that long flat
convection cells can be produced in a shallow convective
atmosphere and that the cell shape parameter and
critical Rayleigh number have simple forms y =2m? and
Re=4mnr* when e~vy. The parameter m may be called
the relative mixing ratio.

Dimensional analysis indicates that P=Rd?/L?is the
relevant parameter for elongated convection not R. If
the length scale L is taken to be the cell width then we
have that L=m%d and this gives P=R/m as the basic
parameter. Thus, the onset of convection depends upon
P =4r* which is constant.

It is a straightforward extension to include rotation
into the convection analysis for the case of large
l=m=mn, i.e., e~vy. When this is done we obtain

a m\}
a=—, y= 27r<—> , Re=2rm(a+tn?), (46)
mo. a

where a?=m4+T,, T.=40%d*/vv?. For the less inter-
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esting case of e=0 we obtain the result
o
a? =—2—, v=2r(2m/a)}, Re=mn(4a+57%). (47)
m

The analysis of elongated convection cells also implies
that the use of eddy viscosities in numerical models
prevents the growth of small-scale convection with the
limiting horizontal length scale being defined as
d(vu/vv)t.
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